

SPECIFICATION FOR APPROVAL

File No.: Q/FRK 0.GS.E.C32-C14

Product Name Metallized polypropylene film capacitor (Box-type)

Product Type MKP21

Product Code C323A334KB1C000

Customer Customer Code

Issue Date 2023-05

Xiam	en Faratronic C	Approved by Customer	
Drafted	Checked	Approved	
张宝则	倪宏琳	3k\$ [4]	

Xiamen Faratronic Co. Ltd.

Add: 99 Xinyuan Road, Haicang District, Xiamen, China

Marketing/Sales center

TEL: 0086-592-6208620/6208618/6208589/6208505

FAX: 0086-592-6208777

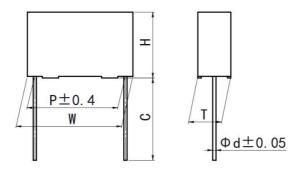
Mail: Vitawang@faratronic.com.cn

michael_lai@faratronic.com.cn

chris@faratronic.com.cn donny@faratronic.com.cn

Http: www.faratronic.com.cn

^{*.}The specification are the property of Xiamen Faratronic Co.Ltd and shall not be copied or used as commercial purposes without permission.



Version history

Current version	Date	Author	Change description

Metallized polypropylene film capacitor (Box-type)

■ Outline Drawing

 $W\pm0.4$, $H\pm0.4$, $T\pm0.4$

■ Features

- Metallized polypropylene structure
- Low loss at high frequency
- Small inherent temperature rise
- Plastic case (UL94 V-0), Epoxy resin sealing

■ Typical application

- Widely used in high frequency, DC,AC and pulse circuits
- S-correction circuits for TV sets and monitors

■ Specifications

Reference Standard	GB/T 10190 (IEC 60384-16)								
Climatic Category	55/105/56								
Rated temperature	85°C								
Operating temperature	-55°C~105°C (+85°C to +105°C: decreasing factor 1.25% per °C for U _R)								
Rated Voltage	160Vdc(90Vac); 250Vdc(160Vac); 400Vdc(220Vac); 630Vdc(250Vac); 1 000Vdc(400Vac); 1 600Vdc(600Vac); 2 000Vdc(700Vac)								
Capacitance Range	0.00056	-15.0μF							
Capacitance Tolerance	±2% (G),	±3% (H), =	±5%(J), ±10	% (K), ±20	% (M)				
Voltage Proof	1.6U _R (5s)								
Dissipation Factor	≤10×10 ⁻⁴ (20°C, 1kHz)								
Insulation Resistance	$R \ge 100 000 MΩ$, $C_N \le 0.33 μF$ $RC_N \ge 30 000s$, $C_N > 0.33 μF$ (20°C, 100V, 1min)								
Maximum Pulse Rise	II (V)	$U_R(V)$ $D_r = 0$ $D_r = 0$ $D_r = 0$							
Time(dV/dt)	$O_{R}(V)$	P=5.0	P=7.5	P=10.0	P=15.0	P=22.5	P=27.5		
If the working voltage(U) is	160	110	310	190	110	65	55		
lower than the rated	250	270	660	560	310	130	110		
voltage(U _R),the capacitor can be worked at a higher dV/dt. In	400	440	900	780	600	300	130		
this case, the maximum	630	550	1500	1200	900	400	200		
allowed dV/dt is obtain by	1 000			2200	2 000	800	300		
multiplying the right value	1 600				4 500	1 800			
with U_R/U .	2 000				9 500	4 500			

■ Part number system

The 15 digits part number is formed as follow:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 C
 3
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Digit 1 to 3 Series code

C32=MKP21

Digit 4 to 5 D.C. rated voltage

2C=160V 2E=250V 2G=400V

2J=630V 3A=1000V 3C=1600V

3D=2000V

Digit 6 to 8 Rated capacitance value

For example : $103=10\times10^{3} \text{ pF} = 0.01 \mu\text{F}$

Digit 9 Capacitance tolerance

 $G=\pm 2\%$, $H=\pm 3\%$, $J=\pm 5\%$

 $K=\pm 10\%, M=\pm 20\%$

Digit 10 Pitch

2=5.0mm 3=7.5mm 4=10mm

6=15mm 9=22.5mm B=27.5mm

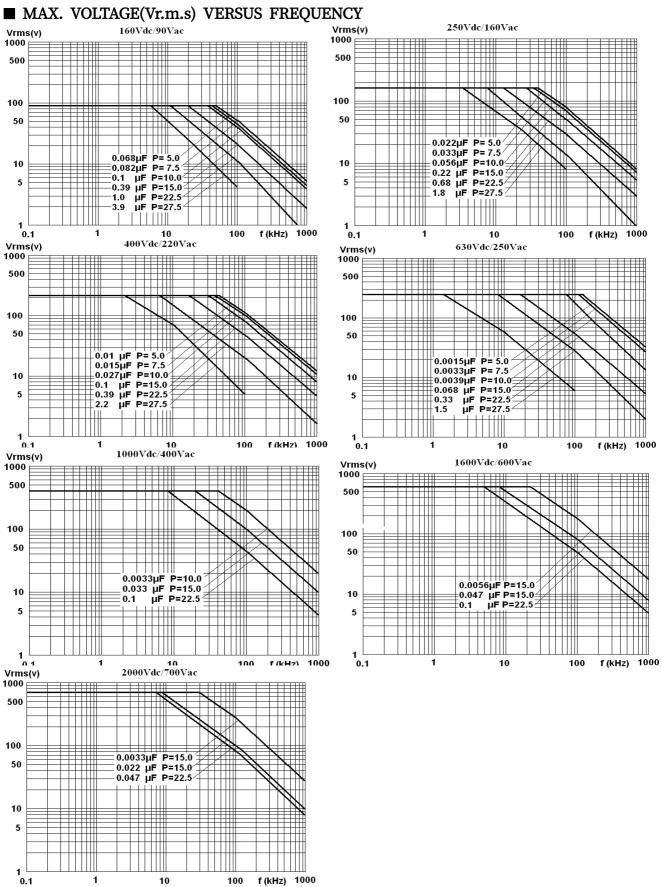
Digit 11 Internal use

Digit 12 to 15 Lead form and packaging code

Table 1 Lead form and packaging code

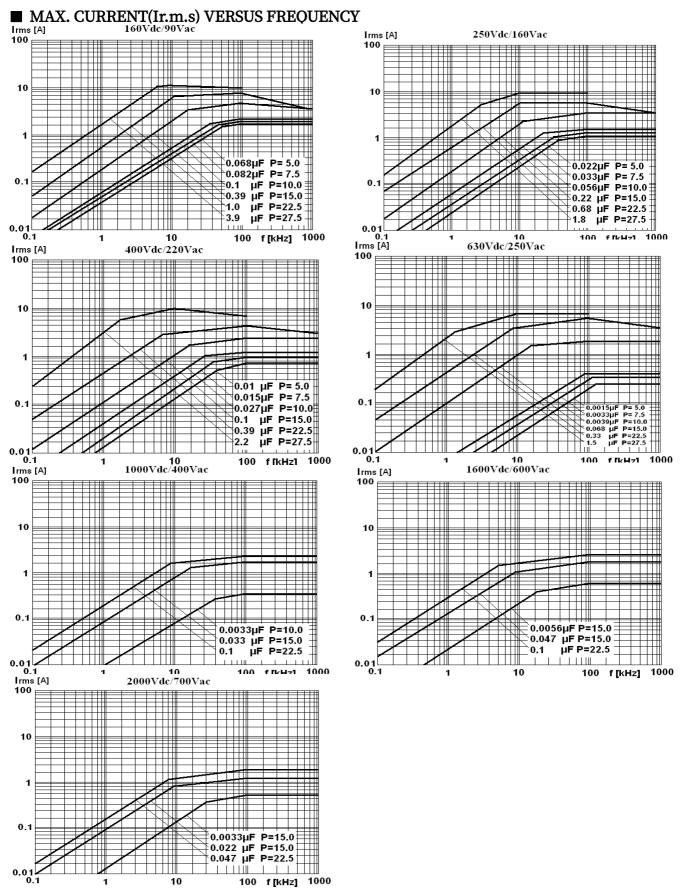
	Digit 12 Digit 13 Digit 14 Digit 15								
	Digit 12	Digit 13		Digit 14		Digit 15			
code	explanation	code	explanation	code	explanation	code	explanation		
A	ammo-pack	2 3 4 6	F=5.0mm F=7.5mm F=10.0mm F=15.0mm	0	straight	1 5	each cap. among two consecutive holes P3=12.7mm,H=18.5mm (For pitch=5.0/7.5mm) P3=25.4mm;H=18.5mm (For pitch=10/15mm)		
С	straight lead "C" in the figure above	co de 00 45	explanation standard lead lo (18mm~26mm) lead length 4.5	dard lead length nm~26mm)		0	Length tolerance ±0.5mm Or standard length		

Note: Recommend short lead due to long lead could deform easily.



■ Dimensions (mm)

1 000Vdc(400Vac)							
C _N (µF)	w	н	Т	P	d	Part number	
0.33	32.0	22.0	13.0	27.5	0.8	C323A334JB1C000	


Note: 1. "-" =capacitance tolerance code, M= \pm 20%,K= \pm 10%,J= \pm 5%, H= \pm 3%,G= \pm 2% 2. "****" =lead form and packaging code (refer to table 1).

Note: sinusoidal wave-form, environment temperature \le 85 °C ,internal temperature rise \triangle T=10 °C , p (pitch) in mm..

Note: sinusoidal wave-form, environment temperature \leq 85 °C, internal temperature rise \triangle T=10 °C, p (pitch) in mm.

■ Test Method And Performance

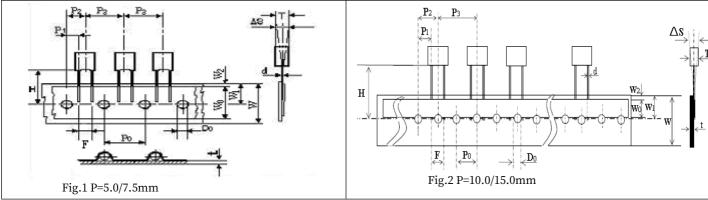
No.	Item		Performance	Test method(IEC 60384-16)
1	Sold	erability	Good quality of tinning	Solder temperature:245°C±5°C Immersion time: 2.0s±0.5s
	Initial measurement		Capacitance Tgδ:1kHz, C>1.0μF 10kHz, C≤1.0μF	
2	Terminal Strength (straight lead)		There shall be no visible damage	Tension: 0.6≤φd≤0.8mm, 10N
	Resistance	to solder hea	There shall be no visible damage	Solder temperature:260°C±5°C Immersion time: 10s±1s
	Final measurement		Δ C/C $\leq \pm 3$ % (relative to the initial value) Increase of tg8: $\leq 0.004 (10 \text{kHz,C} \leq 1.0 \mu\text{F})$ $\leq 0.004 (1 \text{kHz,C} > 1.0 \mu\text{F})$	
3	Initial measurement Rapid change of temp erature		Capacitance Tgδ:1kHz, C>1.0μF 10kHz, C≤1.0μF	
			There shall be no evidence of deterioration.	θ_A =-55°C, θ_B =+105°C 5 cycles, Duration: t=30min
	Vibration(straight lead)		There shall be no evidence of deterioration.	Amplitude 0.75mm or acceleration 98m/s ² (whichever is the smaller severity), f: 10Hz to 500Hz.Three directions, 2h for each direction, total 6h.
3	Bump(st	raight lead)	There shall be no evidence of deterioration.	4 000 times, Acceleration: 390m/s²,Pulse duration, 6ms
	Final measurement		Δ C/C \leq ± 3 % (relative to the initial value) Increase of tg δ : \leq 0.004 (10kHz, C \leq 1.0 μ F) \leq 0.004 (1kHz, C $>$ 1.0 μ F) IR: \geq 50% of the rated value	
		Initial measureme	Capacitance Tgδ:1kHz, C>1.0μF	
	climate	nt Dry heat	10kHz, C≤1.0μF	+105°C, 16h
4	sequenc e	Damp heat, Cyclic		Test Db, Severity: b, the first cycle
		Cold		-55°C, 2h

Low air pressure	There shall be no permanent brea kdown, flashover or other harmful deformation when applying $U_{\rm R}$ at the last 1 minute.	15°C∼35°C, 8.5kPa, 1h,
------------------------	--	------------------------

No.	Ite	em	Performance	Test method(IEC 60384-16)
		Damp heat, cyclic other		Test Db, Severity b, the other cycles, Applying U_R for 1 minute after the test finished.
4	climate sequence (continue)	Final mea surement	There shall be no evidence of deterioration and the marking shall be legible. Δ C/C \leq \pm 5 % (relative to the initial value) Increase of tg δ : \leq 0.005 (10kHz, C \leq 1.0 μ F) \leq 0.005 (1kHz, C>1.0 μ F) IR: \geq 50% of the rated value	
5	Damp heat steady state		There shall be no evidence of deterioration and the marking shall be legible. Δ C/C \leq \pm 5% (relative to the initial value) Increase of tg δ \leq 0.002(1kHz) IR: \geq 50% of the rated value	Temperature:40°C ±2°C Humidity: 93 ⁺² ₋₃ %RH Duration: 56days
6	Endurance		Δ C/C \leq ± 5 % (relative to the initial value) Increase of tg δ : \leq 0.004 (10kHz, C \leq 1.0 μ F) \leq 0.004 (1kHz, C>1.0 μ F) IR: \geq 50% of the rated value	Temperature: $+85^{\circ}$ C Voltage: $1.25 \times U_R$ Duration: 1 000h
7	Temperature characteristic		Measuring capacitance at test point b, d, f: Characteristic at lower category temperature -40°C: $0 \le (C_b - C_d)/C_d \le +3\%$ Characteristic at upper category temperature $+85^{\circ}$ C: $-3.25\% \le (C_f - C_d)/C_d \le 0$	Static method: The capacitors should be kept at the following temperature in turn: a.(\pm 20 \pm 2) °C, b.(\pm 40 \pm 2) °C, d.(20 \pm 2) °C, f.(\pm 85 \pm 2) °C, g.(\pm 20 \pm 2) °C
8	Charging and discharging		Δ C/C ≤ ± 5 % (relative to the initial value) Increase of tgδ: ≤0.005 (10kHz, C≤1.0 μ F) ≤0.005 (1kHz, C>1.0 μ F) IR: ≥ 50% of the rated value	Times: 10 000 Duration of charging: 0.5s Duration of discharging: 0.5s Charging voltage: rated voltage U_R Charging resistance: $220/C_N(\Omega)$ Discharging resistance: $U_R \div C_N \div dv/dt(\Omega)$ C_N : rated capacitance (μ F) dv/dt value: see P2

■ Marking (For example)

103J 630 P=5mm 103J 630 P=7.5mm&P=10mm **SD** MKP21 104J 630 P≥15mm


Marking Introduction:

$\triangleleft \triangleright$	Brand MKP21		Туре	
630	Rated voltage	103/104	Rated capacitance	
J	Tolerance	-	-	

■ Taping specification for box-type capacitors

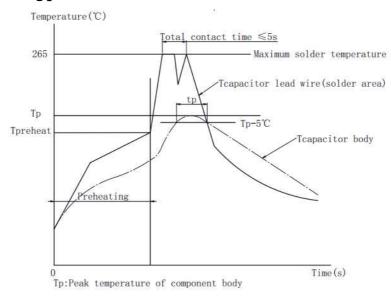
▲ Outline Drawing

▲ Taping Dimensions(mm)

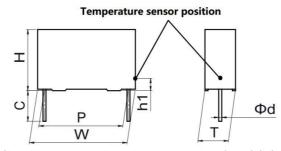
Technology index		Dimensions						
title	Code	P=5.0	P=7.5	P=10.0	P=15.0	Toleranc e		
Taping type	_	Fig 1	Fig 1	Fig2	Fig 2			
Part number Digit12-15	Ammo- pack	A201	A301	A405	A605			
Taping pitch	P_3	12.7	12.7	25.4	25.4	±1.0		
Feed hole pitch	P_0	12.7	12.7	12.7	12.7	±0.3		
Center of wire	P_1	3.85	2.6	7.7	5.2	±0.7		
Center of body	P_2	6.35	6.35	12.7	12.7	±1.3		
Pitch of taping wire	F**	5.0	7.5	10.0	15.0	+0.6 -0.1		
Component alignment	ΔS	0	0	0	0	±2.0		
Height of component from tape center	H***	18.5	18.5	18.5	18.5	±0.5		
Carrier tape width	W	18.0	18.0	18.0	18.0	+1.0 -0.5		
Hold down tape width	\mathbf{W}_0	6min	10min	10min	10min			
Hole position	W_1	9.0	9.0	9.0	9.0	±0.5		
Hold down tape sition	W_2	3max	3max	3max	3max			
Feed hole dia.	D_0	4.0	4.0	4.0	4.0	±0.2		
Tape thickness	t	0.7	0.7	0.7	0.7	±0.2		

Note: * P₀=15mm is also available; ** F can be other lead spacing; *** H=16.5mm is available;

Soldering suggestions


▲ Manual soldering

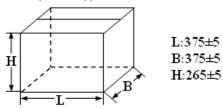
Max. temperature: 350°C, time: 3s


▲ Wave soldering

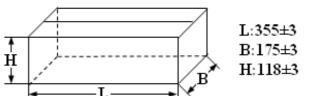
There are many factors affecting the heating of film capacitor during the wave soldering process, such as: preheating temperature, preheating time, soldering temperature, soldering time, other heat sources influence and so on.

The typical soldering profile is as below:

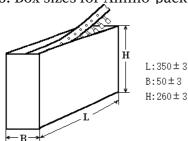
▲ Because overheating could damage the capacitor, we recommend paying attention to the maximum capacitor temperature and heating time, use temperature sensor to detect the maximum capacitor body temperature.


Note: If re-working or dipping twice is necessary, it should be done after the capacitor returns to the normal temperature.

Temperature sensor position (Tcapacitor body)	The capacitor body surface of lead side, capacitor height position from PCB: h1=2 \sim 3mm					
Maximum capacitor body temperature	OPP film P≤15mm	OPP film P>15mm	PET film			
Tp(°C)	115	120	125			
Maximum capacitor lead wire temperature (°C)	265	265	265			
Maximum capacitor body heating time tp=Tp-5°C	30s					



■ Packing box sizes(mm)(example)


1. Out packing box for bulk

2. Inner packing box for bulk

3. Box sizes for Ammo-pack

■ Storage conditions

▲ It must be noted that the solderability of the terminals may be deteriorated when stored in an atmosphere filled with moisture, dust, or a reactive oxidizing gas.(hydrogen chloride, hydrogen sulfide, sulfuric acid,etc.)

▲ It shouldn't be located in particularly high temperature and high humidity, it must submit to the following conditions(unchanging primal package):

Temperature: -40 °C to 35 °C

Humidity: Average per year ≤ 70% RH;

For 30 full days randomly distributed throughout the year ≤80%RH

Storage time for tinned lead wire: (from the date marked on the capacitor's body or the label glued to the package):

Bulk(packed with plastic bag): \leq 24 months;

Taping and line up: ≤12 months